Background

Prevalence of Sterilization Compared With Other Contraceptive Methods

According to data from the 2006–2010 National Survey of Family Growth, 38.4 million women aged 15–44 years used contraception. Sterilization remained the most common method, used by 47.3% of married couples (tubal occlusion, 30.2%; vasectomy, 17.1%) (5). In comparison, 18.6% of married couples used oral contraceptives, 15.3% used male condoms, 7.1% used intrauterine devices (IUDs), and 3.9% used injectable contraceptives (5). Rates of female sterilization increased dramatically in the 1970s, peaking at 702,000 procedures in 1977; remained stable in the 1980s and early 1990s; and decreased slightly to 643,000 procedures in 2006 (6).

Female Sterilization

Timing

Female sterilization can be performed at any time before or after pregnancy. The choice and timing of sterilization are affected by individual patient preference, medical assessment of acute risk, access to services, and insurance coverage. The timing of the procedure influences both the surgical approach and the method of tubal occlusion. In the United States, more than one half of all tubal occlusions are performed in the early postpartum period, with sterilization procedures performed after 8–9% of all hospital deliveries (6).

Postpartum. Postpartum sterilization is performed at the time of cesarean delivery or after a vaginal delivery and should not extend the patient’s hospital stay. Mini-laparotomy after vaginal delivery is generally performed before the onset of significant uterine involution through a small infraumbilical incision. It typically is performed with regional or general anesthesia, but may be performed using local anesthesia with sedation. In most cases, epidural anesthesia placed during labor can be left in place for the procedure (7).

Postpartum sterilization requires counseling and informed consent before labor and delivery (8). Ideally, consent should be obtained during prenatal care, when the patient can make a considered decision, review the...
risks and benefits of the procedure, and consider alternative contraceptive methods. Various obstacles, including young age and concern for patient regret, the consent process, lack of available operating rooms and anesthesia, and receiving care in a religiously affiliated hospital, prevent as many as 50% of women who request postpartum sterilization during their prenatal care from undergoing the procedure before discharge after delivery. Risk of repeat, unintended pregnancy within 1 year of delivery, which has been reported to be as high as 46.7% for women who requested but did not receive postpartum sterilization, emphasizes the importance of facilitating this requested procedure (9). In order to be an effective advocate for postpartum sterilization, the obstetrician–gynecologist needs to be proactive about identifying and overcoming barriers to accomplishing a postpartum procedure (10).

Health care providers also must be familiar with any laws and regulations that may constrain sterilization, such as limitations on the patient’s age, and time and procedural requirements for the consent process. Some patients have insurance coverage restricted to pregnancy and the immediate postpartum period; such women may have limited access to contraceptive options after delivery. The health care provider should inform the patient that insurance coverage for sterilization is variable so that she can discuss this issue with her insurer. In cases of intrapartum or postpartum maternal or neonatal complications, the patient and the health care provider should consider postponing sterilization to a later date (11).

Postabortion. Postabortion sterilization can be performed immediately after an uncomplicated spontaneous or induced abortion with no increased risk compared with an interval procedure (12). After a first-trimester abortion or a second-trimester abortion, tubal occlusion by either laparoscopy or minilaparotomy is acceptable. With either approach, a single anesthetic may be used for the abortion and the tubal occlusion. As with postpartum sterilization, it is important to consider state regulations. Some states have enacted statutes that limit a woman’s ability to consent for sterilization when seeking an abortion.

Interval. Tubal occlusion can be performed as an interval procedure separate from pregnancy. A urine pregnancy test should be done before the procedure; however, this does not rule out a luteal phase pregnancy. Although not a requirement, performing the procedure during the patient’s follicular phase or using an effective method of contraception before the procedure reduces the likelihood of a concurrent pregnancy and may facilitate visualization of tubal ostia for hysteroscopic procedures.

Sterilization Approaches and Techniques

Hysteroscopy. Hysteroscopic tubal occlusion for sterilization has high efficacy and low procedure-related risk, cost, and resource requirement. Hysteroscopic techniques are not indicated for sterilization after delivery or abortion. Hysteroscopic techniques avoid entry into the peritoneal cavity and may decrease the risk of injury to abdominal organs. Unlike laparoscopic or minilaparotomy techniques, hysteroscopic sterilization is commonly performed as an office procedure, which involves the use of a paracervical block with or without oral sedation or intravenous sedation. Hysteroscopic occlusion techniques, followed by a confirmatory hysterosalpingography (HSG), have at least equal if not superior efficacy to tubal occlusion done by laparoscopy or minilaparotomy.

Two hysteroscopic methods are currently approved for use by the U.S. Food and Drug Administration. Essure, approved in 2002, involves the insertion of a 4-cm long implant with a stainless steel inner coil and nickel titanium outer coil into each fallopian tube by a disposable delivery catheter; tubal occlusion occurs by an inflammatory reaction and tissue growth in response to polyethylene terephthalate fibers. Essure is generally performed with normal saline as the distention medium and is approved for use in women who are at least 6 weeks postpartum. A second method, Adiana, which involved a combination of radiofrequency energy and implant placement, is no longer manufactured because of financial reasons and is not available for use. There were no safety or efficacy concerns with Adiana.

Hysteroscopic procedures require the use of an alternative method of contraception for at least 3 months after the procedure and until a confirmatory HSG indicates successful tubal occlusion. Many of the pregnancies that occurred after hysteroscopic sterilization have been attributed to inadequate occlusion, which emphasizes the importance of adherence to follow-up HSG protocols. Depending on the patient population, postoperative HSG adherence rates range from as low as 13% up to 71.1%. Patient reminders and a follow-up tracking system have been shown to improve adherence (13, 14). When considering a hysteroscopic approach to sterilization, it is recommended that patients and their health care providers discuss the need for HSG follow-up and consider whether insurance will provide coverage for the imaging procedure. The opportunity to have an office procedure with minimal anesthesia and recovery time motivates some patients to elect hysteroscopic sterilization over the more traditional laparoscopic approach (15).

In early clinical trials for Essure, the successful bilateral placement rate was approximately 90%. In
subsequent studies of procedures performed with the third-generation delivery catheter, the successful bilateral placement rate was 96.9% (16). No pregnancies have been reported among the 643 women in clinical trials with tubal occlusion confirmed by HSG after bilateral Essure insert placement. Of the women in clinical trials with successful placement, 3.5% had tubal patency confirmed by HSG at 3 months and 0% were patent at 6 months (17, 18). Health care providers should be aware that there is a specific HSG protocol outlined by the manufacturer of Essure that optimizes the accuracy of this follow-up testing.

Laparoscopy. The laparoscopic approach is used for interval and postabortal tubal occlusion procedures and is performed as an outpatient procedure. Laparoscopy provides an opportunity to inspect the abdominal and pelvic organs, requires small incisions, is immediately effective, and enables a rapid return to full activity. The disadvantage of laparoscopy is the risk of bowel, bladder, or major vessel injury. The procedure can be performed in appropriately selected patients with local anesthetic and intravenous sedation. However, the procedure is typically performed under general anesthesia in an operating room setting. Use of general anesthesia slightly increases risk of complications, but increases the acceptability of the procedure to patients and health care providers. Tubal occlusion can be achieved using electrocoagulation, mechanical devices, or tubal excision.

Electrocoagulation. Bipolar electrocoagulation for tubal occlusion is used exclusively with laparoscopic approaches. At least 3 cm of the isthmic portion of the fallopian tube must be completely coagulated (19). Monopolar electrocoagulation has been associated with thermal injury to the bowel and is rarely used.

Mechanical Devices. Mechanical devices commonly used in the United States include the silicone rubber band, the spring-loaded clip, and the titanium clip lined with silicone rubber. Special applicators are necessary for each of these mechanical occlusion devices. The silicone band can be applied only to a fallopian tube that is sufficiently mobile to allow it to be drawn into the applicator. All of these devices are most likely to be effective when used to occlude a normal fallopian tube; tubal adhesions, thickened tubes, or dilated fallopian tubes may increase the risk of misapplication and subsequent failure. Spontaneous clip migration or expulsion is rare (20–22).

Tubal Excision. Complete or partial salpingectomy may be preferable in the setting of abnormal fallopian tubes (such as hydrosalpinx), in which tubal occlusion devices may be less effective. Tubal division can be accomplished using either monopolar energy or bipolar energy and a cutting device. These techniques may be more technically difficult and more likely to cause bleeding than mechanical tubal occlusion techniques. Advantages of salpingectomy include high-contraceptive efficacy and prevention of future tubal disease, although there is some concern that salpingectomy may adversely affect ovarian function.

Minilaparotomy. In the United States, minilaparotomy generally is reserved for postpartum procedures and rarely considered for patients at high risk of complications associated with laparoscopic procedures. Minilaparotomy is performed using a 2–3-cm incision placed in relation to the uterine fundus (generally infraumbilically for postpartum sterilization and suprapubically for interval procedures). Obese patients and those failing laparoscopic procedures may require a larger incision. In contrast with laparoscopy, minilaparotomy requires only basic surgical instruments and is appropriate for low-resource settings where specialized surgical equipment is not available. In randomized trials, there was no difference in major morbidity between women who underwent tubal occlusion procedures performed by laparoscopy compared with minilaparotomy (23). When sterilization is performed concurrent with cesarean delivery, any higher associated morbidity rate compared with sterilization after vaginal delivery has been attributed to the indications for which the cesarean delivery was performed (24).

The commonly used techniques for tubal ligation and excision at the time of minilaparotomy and cesarean delivery include the Pomeroy, modified Pomeroy, and the Parkland methods. The Uchida and Irving methods rarely are used in the United States (25). To ensure complete transection of the tubal lumen, care should be taken to excise a sufficient section of the fallopian tube, particularly in cases of a previous failed tubal ligation or preexisting tubal disease. When an excision method is used, tubal segments should be submitted to pathology to confirm complete transection.

Male Sterilization

Vasectomy performed as an outpatient procedure with local anesthesia has been popular in the United States since 1965. Based on data from the National Survey of Family Growth, 6.2% of reproductive-aged women reported relying on vasectomy as a birth control method (5). Compared with abdominal approaches to female sterilization, vasectomy is safer, more effective, and less expensive (26). Vasectomy is not immediately effective; an alternative form of contraception must be used until a semen analysis confirms azoospermia. Most men are azoospermic at 3 months after vasectomy, and 98–99% are azoospermic at 6 months after vasectomy (27).
Clinical Considerations and Recommendations

Who are good candidates for female sterilization?

Women who have completed their childbearing are candidates for sterilization. Preoperative counseling should be comprehensive and include a discussion of surgical technique, efficacy, safety, potential complications, and the alternatives to female sterilization. These alternatives should include long-acting reversible methods and vasectomy.

Women should have ample opportunity to make a considered decision about sterilization, and they should be informed that factors, such as young age, unstable relationship, and low parity might increase the risk of regret. Women should understand the permanence of the procedure and that in the event of regret, reversal procedures are likely to be prohibitively expensive and not covered by insurance. Women should be counseled about the risk of failure, risk of regret, and alternatives (including LARC and vasectomy). In a well-informed woman, age and parity should not be a barrier to sterilization. Choice of sterilization type should involve consideration of the patient’s medical health, her tolerance of office procedures, her ability to adhere to follow-up testing, the safety of abdominal surgery and general anesthesia, and any health insurance limitations. There are no medical conditions that are strictly incompatible with sterilization, but the safety of a sterilization surgery must be assessed in the context of the patient’s medical conditions. The U.S. Medical Eligibility Criteria for Contraceptive Use, from the Centers for Disease Control and Prevention, provides guidance for many of these circumstances (http://www.cdc.gov/mmwr/pdf/rr/rr5904.pdf).

How safe is laparoscopic sterilization?

Tubal occlusion via laparoscopy is a safe and effective method of permanent contraception. Overall complication rates are low, and procedure-related death is a rare event. Mortality rates in the United States have been estimated at one to two deaths per 100,000 procedures (26), with most deaths attributed to hypoventilation and cardiopulmonary arrest during administration of general anesthesia. Results from a U.S. study from 1977 to 1981 indicate that 11 of 29 sterilization-related deaths occurred in women with underlying medical conditions (28). A more recent study found no mortality among 9,475 women who underwent interval laparoscopic tubal ligation (29). A large Swiss study of 27,653 women undergoing tubal occlusion by laparoscopy or miniligation reported no intraoperative or postoperative deaths (30).

Major complications from laparoscopic tubal ligation are uncommon, vary by study definition, and occur in 0.1–3.5% of laparoscopic procedures (20, 21, 29, 30). Using a standard definition of intraoperative and postoperative events, overall complication rates for laparoscopic tubal occlusion are estimated to be 0.9–1.6 per 100 procedures; unintended conversion to laparotomy is estimated as 0.9 per 100 cases (29). This complication rate did not vary significantly according to the method of occlusion used. Intraoperative complications include unplanned major surgery needed because of a problem related to the tubal surgery, transfusion, or a life-threatening event. Postoperative complications include unintended major surgery, transfusion, febrile morbidity, a life-threatening event, or rehospitalization. Use of general anesthesia, previous abdominal or pelvic surgery, obesity, and diabetes were independent predictors of complication (29).

How effective is traditional sterilization compared with reversible contraceptive methods?

Laparoscopic tubal occlusion is far more effective than short-term, user-dependent, reversible contraceptive methods, such as oral contraceptive pills, injections, and barrier methods. Data from the 2002 National Survey of Family Growth indicate that within 1 year of starting any reversible method, 12.4% of typical users experience a contraceptive failure (31). Based on recent analysis by method, contraceptive failure occurs in the first year of typical use for 9% of women using oral contraception, patch, or ring; 18% of women relying on the male condom; 3% of women using injectable methods; and 24% using fertility awareness-based methods (32).

Failure rates of sterilization are comparable with those of long-acting reversible contraception methods, such as IUDs and the etonogestrel implant. The annual failure rates for the IUD are 0.8% for the copper T380A and 0.2% for the levonorgestrel-releasing intrauterine system. The etonogestrel implant has a 0.05% reported failure rate, the lowest of any contraceptive method (32).

The U.S. Collaborative Review of Sterilization (CREST), a large, prospective, multicenter observational study of 10,685 women conducted in 1996 by the Centers for Disease Control and Prevention, concluded that although sterilization via laparoscopy or minilaparotomy is a highly effective method of contraception, the risk of failure is substantially higher than previously reported (33). Analysis of CREST data found a 5-year cumulative failure rate of 13 per 1,000 for aggregated sterilization methods (including laparoscopy and laparotomy).
laparotomy) (33), compared with a 5-year cumulative failure rate of 14 per 1,000 procedures for the copper T380A IUD (34). The 5-year cumulative pregnancy rate for the levonorgestrel-releasing IUD ranged from 5–11 per 1,000 procedures (35–37). The risk of pregnancy persists for years after the sterilization procedure and varies by occlusion technique and age of the woman (Table 1).

How does the safety of female sterilization compare with intrauterine devices and the contraceptive implant?

There are few medical contraindications to the use of either IUDs or the contraceptive implant (38). Long-acting methods of contraception, including IUDs and the contraceptive implant, are at least as effective as tubal occlusion and are associated with lower morbidity and mortality. Among women using IUDs for contraception, approximately 1% will experience pelvic infection within the first 20 days (39). Overall, complications with IUDs are uncommon and mainly include expulsion, method failure, and perforation. The expulsion rate is between 2% and 10% during the first year (40). Perforation occurs in 1 per 1,000 insertions or less (41). Complications associated with contraceptive implant use are rare, but include bruising and pain at the implant site (1–3%), implant migration, and deep implant insertion that leads to difficult removal (<1%) (42). Both of these devices are placed in the outpatient setting with no systemic anesthetic, and if placed at the appropriate time should be immediately effective.

Although pregnancy after a sterilization procedure is uncommon, there is substantial risk that any poststerilization pregnancy will be ectopic. Analysis of CREST data found that one third of poststerilization pregnancies (47 out of 143 pregnancies) were ectopic (43). Pregnancies that occur in the setting of hormonal contraceptive or IUD use are also more likely to be ectopic; 20% of all IUD failures result in an ectopic pregnancy (33, 37). There have been several case reports of ectopic pregnancies that occurred in patients with the contraceptive implant (44, 45). However, overall, patients who have undergone sterilization procedures have a lower ectopic risk than noncontraceptive users.

How does hysteroscopic sterilization compare with traditional sterilization methods?

There are no randomized studies that compare hysteroscopic sterilization to other methods of interval sterilization. Data from clinical trials indicate that Essure is a highly effective method of sterilization, but long-term data are lacking. Out of the 50,000 women who had

<table>
<thead>
<tr>
<th>Method</th>
<th>5-year (per 1,000 procedures)</th>
<th>10-year (per 1,000 procedures)</th>
<th>Ectopic (per 1,000 procedures)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postpartum partial salpingectomy</td>
<td>6.3</td>
<td>7.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Bipolar coagulation*</td>
<td>16.5</td>
<td>24.8</td>
<td>17.1</td>
</tr>
<tr>
<td>Silicone band methods</td>
<td>10.0</td>
<td>17.7</td>
<td>7.3</td>
</tr>
<tr>
<td>Spring clip</td>
<td>31.7</td>
<td>36.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Hysteroscopy (Essure)†</td>
<td>1.64</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Vasectomy</td>
<td>11.3</td>
<td>No association</td>
<td></td>
</tr>
</tbody>
</table>

*Secondary analysis of 5-year failure rates with bipolar coagulation performed in different decades found that failure was significantly lower in later periods, reflecting improved technique with the method: 19.5 per 1,000 procedures for 1978–1982 versus 6.3 per 1,000 procedures for 1985–1987 (Peterson 1999).

†U.S. Food and Drug Administration recommended projections based on Bayesian statistical analysis (Baskinski 2010).

undergone Essure procedures between 1997 and 2005, 64 unintended pregnancies were reported to the manufacturer. Most failures were attributed to patients not adhering to the use of an alternative contraceptive until tubal occlusion had been confirmed by HSG (46).

Complications of hysteroscopic sterilization include tubal perforation, improper coil placement, and expulsion of the occlusion devices. In the clinical trials of Essure, tubal perforations occurred in 1–3% of women, intraperitoneal placement in 0.5–3%, and other improper placements in 0.5% of the cases. Coil expulsion occurred in 0.4–2.2% of subjects (17, 18, 47, 48). In a retrospective analysis of 4,306 office-based Essure placements, 98.5% of patients had successful coil placement and the overall complication rate was 2.7%, with vasovagal syncope being the most common. No patients had serious complications that required more than 2 hours of observation in the outpatient unit (47).

One major benefit of hysteroscopic sterilization is that it can be performed as an office procedure using paracervical block and does not require entry into the peritoneal cavity (49). For this reason, major morbidity associated with general anesthesia and abdominal surgery can be avoided. This is particularly appealing for patients with significant coexisting medical disorders, obesity, or intra-abdominal adhesive disease. Several studies have suggested lower cost to hysteroscopic sterilization when compared with laparoscopic sterilization. However, if both are performed in the operating room and HSG costs are included, the cost difference is significantly reduced (50).

Patients and health care providers should be prepared for the possibility that bilateral coil placement may not be possible in every patient. Visualization of tubal ostia and successful device placement may be optimized in the setting of a thin endometrium (follicle phase versus preparation with hormonal agents). A history of sexually transmitted infection has been associated with decreased success rates of device placement, likely related to a history of pelvic inflammatory disease (51). If health care providers chose to perform hysteroscopic sterilization in the operating room, it is advisable to have a contingency plan for establishing contraception in the event that device placement is not possible.

Concomitant hysteroscopic sterilization and endometrial ablation has been described in the literature (52); however, device labeling explicitly precludes this practice. The formation of intrauterine adhesions subsequent to ablation may limit the ability of HSG to assess tubal patency (53). For patients desiring both procedures, a two-stage procedure should be planned with endometrial ablation performed after documentation of tubal occlusion by HSG.

Can patients with nickel sensitivity use Essure?

An Essure insert releases a very small amount of nickel each day, less than one thousandth the amount in the average daily food intake. The reported incidence of adverse events suspected to be related to nickel hypersensitivity in patients with Essure microinserts is extremely small (0.01%). The incidence of confirmed nickel reactions is even smaller. This very low incidence of clinical reactions is consistent with data from other nickel-containing implantable devices and is reassuring (54). In 2011, the nickel sensitivity contraindication was removed from the Essure procedure instructions. Patients with nickel sensitivity are candidates for Essure and do not require preprocedure confirmatory skin testing. However, they should be counseled that microinserts do contain minute amounts of nickel, which are likely to be of no clinical significance (55).

Which method of tubal occlusion is most effective for postpartum sterilization?

Data from the CREST study indicate that postpartum partial salpingectomy is associated with lower failure rates than interval tubal occlusions done by laparoscopy (33). This lower failure rate may be because a segment of tube is removed rather than mechanically occluded or cauterized, or because a pathologist is able to confirm complete tubal cross sections. A recent systematic review of studies of the titanium clip lined with silicone rubber and partial salpingectomy by the modified Pomeroy technique concluded that the titanium clip may have decreased efficacy when used in the immediate postpartum period (56). A randomized control trial that compared the titanium clip with partial salpingectomy for postpartum sterilization concluded that the titanium clip is significantly less effective (57).

Does the technique used for female sterilization affect the risk of ectopic pregnancy?

The risk of ectopic pregnancy varies substantially with the method and timing of tubal occlusion. Based on CREST study data, the 10-year cumulative probability of ectopic pregnancy after tubal occlusion by any method was 7.3 per 1,000 procedures (43) (Table 1). Ectopic pregnancy was not reported in the clinical trials with hysteroscopic tubal sterilization, but has been described in a case report after tubal occlusion was confirmed by HSG (58).

For all methods except postpartum partial salpingectomy, the probability of ectopic pregnancy was greater
for women sterilized before age 30 years than for women sterilized at age 30 years or older. Postpartum partial salpingectomy was the only method reported by the CREST study that did not have a higher 10-year cumulative probability of ectopic pregnancy in younger women (43). For all methods of tubal occlusion, the risk of ectopic pregnancy did not diminish with the length of time since the procedure.

How do the safety and efficacy of tubal occlusion compare with vasectomy?

Vasectomy is safer than tubal occlusion. It is a less invasive surgical procedure, is performed using local anesthesia, and is protective against ectopic pregnancy. Although specific data are lacking on major morbidity and mortality related to vasectomy, serious complications are thought to be rare (59–61).

Vasectomy has a failure rate of 0.15% in the first year, which is lower than the rate reported for most methods of female sterilization (31, 60). Neither female nor male sexual function appears to be affected after tubal occlusion or vasectomy (62, 63).

Vasectomy failure is not associated with an increased risk of ectopic pregnancy. When controlling for pregnancy rates, tubal occlusion has a higher rate of ectopic pregnancy than vasectomy. The incidence of ectopic pregnancy is 0.32 per 1,000 women-years in women who had tubal occlusion and 0.005 per 1,000 women-years in women whose partners had vasectomy (64). By comparison, the estimated absolute incidence of ectopic pregnancy in women using no contraception is 2.6 per 1,000 women-years (64).

Vasectomy-related major morbidity and mortality are extremely rare in the United States (59). Minor complications of vasectomy, such as infection at the site of incision, bleeding, hematoma formation, granuloma formation, and epididymitis, are reported to occur at rates of 0.4–10% (65, 66). In comparison with the incisional technique, the no-scalpel vasectomy technique has a lower incidence of hematoma formation, infection, and pain and has a shorter operative time (59, 65, 67, 68).

Multiple large epidemiologic studies have concluded there is no causal relationship between vasectomy and both atherosclerosis disease and immunologic disease (60, 62, 69, 70). In addition, there are robust data suggesting no association between vasectomy and testicular cancer or prostate cancer (63, 71–73). The nerves involved in male erectile function and ejaculation are not affected by vasectomy, and there is no increased risk of impotence. Chronic testicular pain after vasectomy may rarely result from obstructive epididymitis or sperm granuloma.

Does tubal occlusion cause menstrual abnormalities?

Prospective studies that account for confounding factors, such as presterilization use of hormonal contraceptives, have found that tubal occlusion had little or no effect on menstrual patterns (74–81). An analysis of CREST data found that women who underwent sterilization were no more likely than controls to report persistent changes in their menstrual cycle length or intermenstrual bleeding (82). However, they were more likely to have beneficial changes in their menstrual cycle, including decreases in the amount of bleeding, in the number of days of bleeding, and in menstrual pain. The method of tubal occlusion did not have a significant effect on the findings. There are conflicting data describing the effect of tubal occlusion on menstrual patterns (83, 84).

Are women who undergo tubal occlusion more likely to have a hysterectomy?

In an analysis of CREST data, women who had tubal occlusion were found to be four to five times more likely to undergo hysterectomy over a 14-year follow-up period than those whose partners underwent vasectomy (85). Increased risk was independent of patient age and the method of tubal occlusion used, but was associated with a presterilization history of menstrual disorders or other benign gynecologic disorders, including endometriosis and uterine leiomyomas. There is no known biologic mechanism to support a causal relationship between tubal occlusion and subsequent hysterectomy.

Does tubal occlusion have noncontraceptive benefits?

Multiple observational trials have confirmed that laparoscopic tubal occlusion reduces the incidence of ovarian cancer (relative risk, 0.29–0.69) (86–89). This protective effect persists after adjusting for age, use of oral contraceptives, and parity (86). Tubal occlusion maintains its protective effect in women at high risk of ovarian cancer due to BRCA1 and BRCA2 mutations (90). Recent evidence suggests that ovarian cancer may originate from the fimbrae of the fallopian tube, which leads some health care providers to remove the entire tube for sterilization (91–93). Although tubal occlusion does not protect against sexually transmitted infections (including human immunodeficiency virus [HIV]), it has been shown to reduce the spread of organisms from the lower genital tract to the peritoneal cavity and, thus, protect against pelvic inflammatory disease (94). This protection is incomplete, however, as suggested by rare case reports of pelvic inflammatory disease and tubo-ovarian abscess in women who have undergone sterilization (95–97).
However, patients should not be denied sterilization because of presence of such risk factors, especially young age. Both the patient and her partner, when appropriate, should be counseled (see Box 1). The choice to undergo sterilization is an individual and personal decision. It is critical that health care providers refrain from inserting their own biases or judgments about the appropriateness of a patient’s decision to proceed with sterilization. Full consideration should be given to all reversible contraceptive options, particularly the long-acting reversible methods. Patients must be informed that IUDs and the implant are at least as effective as sterilization.

Summary of Recommendations and Conclusions

The following recommendations and conclusions are based on good and consistent scientific evidence (Level A):

- Tubal occlusion by laparoscopy is a safe and effective method of permanent contraception.

Box 1. Components of Presterilization Counseling

- Permanent nature of the procedure, not intended to be reversible
- Alternative methods available, particularly long-acting reversible contraception and vasectomy
- Details of the procedure, including risks and benefits of anesthesia
- The possibility of failure, including ectopic pregnancy, with sterilization and other methods
- The need to use condoms for protection against sexually transmitted infections, including HIV
- The need to use an alternative form of contraception after hysteroscopic sterilization until hysterosalpingogram confirms tubal occlusion
- Completion of informed consent process
- Local regulations regarding interval from time of consent to procedure
- Effect of sterilization on future health insurance coverage (eg, noncontraceptive uses of hormonal contraceptives, reversal, or infertility services)

However, patients should not be denied sterilization because of presence of such risk factors, especially young age. Both the patient and her partner, when appropriate, should be counseled (see Box 1). The choice to undergo sterilization is an individual and personal decision. It is critical that health care providers refrain from inserting their own biases or judgments about the appropriateness of a patient’s decision to proceed with sterilization. Full consideration should be given to all reversible contraceptive options, particularly the long-acting reversible methods. Patients must be informed that IUDs and the implant are at least as effective as sterilization.
Practice Bulletin No. 133

Tubal occlusion does not protect against sexually transmitted infections (including HIV).

Compared with abdominal approaches to female sterilization, vasectomy is safer, more effective, and less expensive.

Laparoscopic tubal occlusion is far more effective than short-term, user-dependent, reversible contraceptive methods, such as oral contraceptive pills, injections, and barrier methods.

Long-acting methods of contraception, including IUDs and the contraceptive implant, are at least as effective as tubal occlusion and are associated with lower morbidity and mortality.

Although pregnancy after a sterilization procedure is uncommon, there is substantial risk that any post-sterilization pregnancy will be ectopic.

Patients who have undergone sterilization procedures have a lower ectopic risk than noncontraceptive users.

The following recommendations and conclusions are based on limited or inconsistent scientific evidence (Level B):

- Hysteroscopic occlusion techniques, followed by a confirmatory HSG, have at least equal if not superior efficacy to tubal occlusion done via laparoscopy or minilaparotomy.
- Hysteroscopic procedures require the use of an alternative method of contraception for at least 3 months after the procedure and until a confirmatory HSG indicates successful tubal occlusion.
- Postpartum partial salpingectomy is associated with lower failure rates than interval tubal occlusions done via laparoscopy.
- Laparoscopic tubal occlusion reduces the incidence of ovarian cancer.

The following recommendation is based primarily on consensus and expert opinion (Level C):

- Women should be counseled about the risk of failure, risk of regret, and alternatives (including LARC and vasectomy). In a well-informed woman, age and parity should not be a barrier to sterilization.

References

57. Rodriguez M, Secu A, Sokal D. Comparative efficacy of postpartum sterilisation with the titanium clip versus partial salpingectomy: a randomised controlled trial. BJOG 2012; doi: 10.1111/j.1471-0528.2012.03482.x. (Level I) [PubMed] [Full Text] ↩
61. Shi G, Turok DK, Parker WJ. Vasectomy: the other (better) form of sterilization. Contraception 2011;83:310–5. (Level III) [PubMed] [Full Text] ↩

The MEDLINE database, the Cochrane Library, and the American College of Obstetricians and Gynecologists’ own internal resources and documents were used to conduct a literature search to locate relevant articles published between January 1990–October 2012. The search was restricted to articles published in the English language. Priority was given to articles reporting results of original research, although review articles and commentaries also were consulted. Abstracts of research presented at symposia and scientific conferences were not considered adequate for inclusion in this document. Guidelines published by organizations or institutions such as the National Institutes of Health and the American College of Obstetricians and Gynecologists were reviewed, and additional studies were located by reviewing bibliographies of identified articles. When reliable research was not available, expert opinions from obstetrician–gynecologists were used.

Studies were reviewed and evaluated for quality according to the method outlined by the U.S. Preventive Services Task Force:

I Evidence obtained from at least one properly designed randomized controlled trial.

II-1 Evidence obtained from well-designed controlled trials without randomization.

II-2 Evidence obtained from well-designed cohort or case–control analytic studies, preferably from more than one center or research group.

II-3 Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments also could be regarded as this type of evidence.

III Opinions of respected authorities, based on clinical experience, descriptive studies, or reports of expert committees.

Based on the highest level of evidence found in the data, recommendations are provided and graded according to the following categories:

Level A—Recommendations are based on good and consistent scientific evidence.

Level B—Recommendations are based on limited or inconsistent scientific evidence.

Level C—Recommendations are based primarily on consensus and expert opinion.

Copyright February 2013 by the American College of Obstetricians and Gynecologists. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, posted on the Internet, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher.

Requests for authorization to make photocopies should be directed to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400.

ISSN 1099-3630

The American College of Obstetricians and Gynecologists
409 12th Street, SW, PO Box 96920, Washington, DC 20090-6920